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CONSPECTUS

Carbon nanotubes (CNTs) are carbon atoms arranged in a crystalline graphene lattice with a 

tubular morphology. CNTs exhibit high tensile strength, possess unique electrical properties, are 

durable, and can be functionalized. These properties allow applications as structural materials, in 

electronics, as heating elements, in batteries, in the production of stain-resistant fabric, for bone 

grafting and dental implants, and for targeted drug delivery. Carbon nanofibers (CNFs) are strong, 

flexible fibers that are currently used to produce composite materials.

Agitation can lead to aerosolized CNTs and CNFs, and peak airborne particulate concentrations 

are associated with workplace activities such as weighing, transferring, mixing, blending, or 

sonication. Most airborne CNTs or CNFs found in workplaces are loose agglomerates of 

micrometer diameter. However, due to their low density, they linger in workplace air for a 

considerable time, and a large fraction of these structures are respirable.

In rat and mouse models, pulmonary exposure to single-walled carbon nanotubes (SWCNTs), 

multi-walled carbon nanotubes (MWCNTs), or CNFs causes the following pulmonary reactions: 

acute pulmonary inflammation and injury, rapid and persistent formation of granulomatous lesions 

at deposition sites of large CNT agglomerates, and rapid and progressive alveolar interstitial 

fibrosis at deposition sites of more dispersed CNT or CNF structures.

Pulmonary exposure to SWCNTs can induce oxidant stress in aortic tissue and increases plaque 

formation in an atherosclerotic mouse model. Pulmonary exposure to MWCNTs depresses the 

ability of coronary arterioles to respond to dilators. These cardiovascular effects may result from 

neurogenic signals from sensory irritant receptors in the lung. Pulmonary exposure to MWCNTs 

also upregulates mRNA for inflammatory mediators in selected brain regions, and pulmonary 

exposure to SWCNTs upregulates the baroreceptor reflex. In addition, pulmonary exposure to 

MWCNTs may induce levels of inflammatory mediators in the blood, which may affect the 

cardiovascular system.
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Intraperitoneal instillation of MWCNTs in mice has been associated with abdominal 

mesothelioma. MWCNTs deposited in the distal alveoli can migrate to the intrapleural space, and 

MWCNTs injected in the intrapleural space can cause lesions at the parietal pleura. However, 

further studies are required to determine whether pulmonary exposure to MWCNTs can induce 

pleural lesions or mesothelioma.

In light of the anticipated growth in the production and use of CNTs and CNFs, worker exposure 

is possible. Because pulmonary exposure to CNTs and CNFs causes inflammatory and fibrotic 

reactions in the rodent lung, adverse health effects in workers represent a concern. NIOSH has 

conducted a risk assessment using available animal exposure–response data and is developing a 

recommended exposure limit for CNTs and CNFs.

Evidence indicates that engineering controls and personal protective equipment can significantly 

decrease workplace exposure to CNTs and CNFs. Considering the available data on health risks, it 

appears prudent to develop prevention strategies to minimize workplace exposure. These 

strategies would include engineering controls (enclosure, exhaust ventilation), worker training, 

administrative controls, implementation of good handling practices, and the use of personal 

protective equipment (such as respirators) when necessary. NIOSH has published a document 

containing recommendations for the safe handling of nanomaterials.

Graphical abstract

I. Introduction

Methods have been perfected to arrange carbon atoms in a crystalline graphene lattice with a 

tubular morphology. A single-walled carbon nanotube (SWCNT) is composed of a single 

cylindrical sheet of graphene and has a diameter of 0.5–2 nm. Multiwalled carbon nanotubes 

(MWCNTs) consist of multiple tubes within a tube and have diameters of 10–150 μm, 

depending on the number of concentric tubes forming the structure. Carbon nanotubes 

(CNTs) can range in length from 0.5 to 30 μm.1 Carbon nanofibers (CNFs) are composed of 
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graphene layers arranged at an angle to the fiber axis. CNFs range from 70 to 200 nm in 

diameter and 10–100 μm in length.2 CNTs exhibit high tensile strength, possess unique 

electrical properties, are resistant to acid or high temperature, and can be easily 

functionalized. Therefore, application as structural materials, in electronics, as heating 

elements, in batteries, in production of conductive and stain-resistant fabric, for bone 

grafting and dental implants, and in targeted drug delivery are being developed. CNFs are 

strong, flexible fibers that are currently being used to produce strong but lightweight 

composite materials.

II. Workplace Exposures to CNTs or CNFs

Occupational exposure to CNTs and CNFs can occur during laboratory research, product 

development (synthesis), downstream use, and waste recycling/disposal. Maynard et al.3 

were the first to report aerosolization of CNTs in a laboratory setting upon agitation of 

SWCNTs during removal of material from the synthesis furnace, transfer of the SWCNTs, 

or cleaning. Respirable dust concentrations ranged from 0.7 to 53 μg/m3, with most airborne 

particles being agglomerates. Aerosolization of MWCNTs during weighing, transfer, and 

sonication was also reported in a laboratory setting.4 Han et al.5 reported that total particle 

concentration in a MWCNT production laboratory could be as high as 430 μg/m3 during 

weighing, blending, and spraying. MWCNTs (agglomerates and more dispersed structures) 

represented only a fraction of this total dust. Lee et al.6 reported particle generation in seven 

MWCNT facilities. Peak total particle concentrations were as high as 320 μg/m3 during 

oven opening, catalyst preparation, gel spraying, and transfer or sonication of MWCNTs. 

Only a fraction of these particles were MWCNTs, with most being metal nano-particles. 

Sawing, drilling, and sanding of composite materials containing CNTs can release both fine 

and nanoscale particles with peak concentrations as high as 8380 μg/m3 being reported 

during the dry cutting of composites in the absence of exposure controls.7,8 Methner et al.9 

measured peak airborne particle concentrations 2–64 times higher than office area levels 

during weighing and mixing of CNFs. These airborne particles included loosely 

agglomerated CNFs. Significant particulate generation was also reported during bagging 

(peak 500 μg/m3) and transfer (peak 1100 μg/m3) of dried CNFs. These aerosolized particles 

contained fiber agglomerates.10 A more complete review of workplace exposure to CNTs 

and of CNFs is available elsewhere.11

III. Animal Model Responses to CNTs

A. Pulmonary Responses

The literature base documenting pulmonary responses (dose and time dependence) 

following intratracheal instillation (IT), pharyngeal aspiration, or inhalation of SWCNTs or 

MWCNTs in rat or mouse models has grown significantly over the past few years. These 

studies have been reviewed in greater detail elsewhere, and commonalities in responses have 

been identified.1,11,12 For example, pharyngeal aspiration of purified SWCNTs (10–40 μg/

mouse) resulted in (1) a dose-dependent and rapid but transient inflammatory and injury 

response, (2) a rapid and persistent granulomatous response, and (3) alveolar interstitial 

fibrosis of rapid onset and progressive nature.13 Short-term (4 days) inhalation exposure to 

SWCNTs induced a similar spectrum of pulmonary reactions.14 On an equal mass lung 
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burden basis, the fibrotic response following inhalation was 4-fold greater than after 

aspiration of SWCNTs.13,14 This was because SWCNTs were more dispersed in the dry 

aerosol (inhalation exposure) than in an aqueous suspension (pharyngeal aspiration). 

Aspiration of a well-dispersed suspension of SWCNTs resulted in a less severe 

granulomatous response and a 4-fold greater interstitial fibrotic response than a poorly 

dispersed SWCNT suspension.15 Furthermore, aspiration of gold-labeled SWCNTs 

demonstrated that agglomerates induced granulomatous lesions in the terminal bronchioles 

and proximal alveoli, while more dispersed SWCNT structures deposited in the distal lung, 

rapidly entered the alveolar interstitium, and caused progressive fibrosis.15 Aspiration of 

purified MWCNTs in mice caused a similar spectrum of pulmonary responses as SWCNTs, 

that is, rapid but transient damage and inflammation, granulomatous lesions, and interstitial 

fibrosis.16 Short-term inhalation (4 days) of MWCNTs induced pulmonary responses in 

mice similar to those reported after aspiration.17 Morphometric analysis indicates that a 

greater fraction of alveolar MWCNTs are phagocytized than SWCNTs, while a greater 

fraction of SWCNTs enter the alveolar interstitium.18 This results in a greater fibrotic 

reaction to an equal lung burden of SWCNTs compared with MWCNTs.18 Recently, Murray 

et al.19 reported that aspiration of CNFs in a mouse model also resulted in transient 

inflammation and damage and persistent fibrosis. The fibrotic potency (on a mass lung 

burden basis) was SWCNTs > CNFs = asbestos. These inflammatory and fibrotic pulmonary 

responses to CNTs have also been associated with measurable alterations of pulmonary 

function, that is, an increase in expiratory time with SWCNTs and decreased compliance 

with increased resistance with aspiration of MWCNTs.13,20 Evidence also indicates that 

SWCNT exposure also decreases the ability of the lung to resist infection.21

Recent studies indicate that functionalization of MWCNTs with −COOH groups 

significantly decreases the inflammatory and fibrotic response after aspiration in a mouse 

model.22,23 These studies open the possibility that adverse bioactivity of CNTs may be 

mitigated through “safety by design”.

B. Pleural Responses

Takayi et al.24 reported induction of mesothelioma after intraperitoneal injection of high 

doses (3 μg/mouse) of MWCNTs. Recently, Kanno et al.25 reported similar responses to 

abdominal exposure to a much lower MWCNT dose (50 μg/mouse). Murphy et al.26 

reported persistent (24 weeks post) inflammation and fibrosis of the parietal pleural surface 

after intrapleural injection of long (>15 μm) but not short (<4 μm) MWCNTs (5 μg/mouse). 

Pulmonary exposure of mice to MWCNTs has been shown to result in the migration of 

CNTs to subpleural tissue and from the subpleural tissue to the intrapleural space with time 

postexposure.27,28 Mercer et al.28 have reported 12000 MWCNT penetrations into the 

intrapleural space 56 days following aspiration of 80 μg of MWCNTs/mouse. Therefore, 

studies are needed to determine whether pulmonary exposure to MWCNTs would result in 

mesotheliomia. Such studies are in progress at NIOSH.

C. Cardiovascular Responses

Inhalation of MWCNTs in rats results in significant impairment of the ability of coronary 

arterioles to respond to dilatory stimuli 24 h post-exposure.29 Similar microvascular 
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dysfunction has been reported after inhalation of nano-titanium dioxide and has been 

associated with stimulation of sensory neurons from the lung and enhanced sympathetic 

input at the systemic arterioles.30,31 Aspiration of MWCNTs has also been reported to 

increase baroreflex activity in rats.32,33 In addition, Erdely et al.34 reported transient 

elevation of blood inflammatory mediators after aspiration of MWCNTs, which may 

mediate this systemic microvascular response. Multiple exposures (aspiration of 20 μg/

mouse, every 2 weeks for 2 months) to SWCNTs also resulted in elevation of inflammation 

and oxidant stress markers in aortic tissue and augmentation of aortic plaques in 

atherosclerotic sensitive ApoE −/− mice.35

D. Central Nervous System Responses

As described above, cardiovascular responses to pulmonary exposure to MWCNTs have 

been attributed to a neurogenic mechanism involving sensor nerve input from the lung to 

brain and resultant sympathetic input to the cardiovascular tissue. Studies by Sriram et al.36 

demonstrate significant induction of inflammatory mRNA and blood/brain damage markers 

in selected regions of the brain 24 h after aspiration of MWCNTs. The direct relationship 

between these central nervous system changes and cardiovascular effects following 

pulmonary exposure to CNTs requires further investigation.

IV. In Vitro Responses to CNTs

The effects of CNTs on various cell types was extensively reviewed previously.1 Many in 

vitro CNT studies are characterized by three issues: (1) the use of doses per cell that are 

much higher than those achieved in animal models of pulmonary exposure, (2) CNT 

agglomeration, and (3) adsorption of assay indicator dyes by CNTs. Therefore, care must be 

taken in analyzing in vitro results. SWCNTs have been reported to be toxic to cells; 

however, much of this cytotoxicity is due to oxidants generated by contaminating metal 

catalysts on the CNTs.37,38 Purified CNTs have been reported to generate low levels of 

reactive species in a cellular system yet remain bioactive in vivo.16,39 Low doses of 

SWCNTs, representative of CNT lung burdens and alveolar epithelial cell surface area 

achieved after aspiration of 40 μg/mouse, exhibit low cytotoxicity. Rather, low dose 

SWCNT exposure of lung fibroblasts increases proliferation rate and collagen production.40 

Therefore, the rapid onset of an interstitial fibrotic response to pulmonary CNT exposure 

may be a direct scaffolding and matrix effect of CNTs resulting in fibroblast activation. This 

scaffolding and matrix effect of CNTs is dependent on dispersed fibrous structures rather 

than CNT agglomerates.41,42

Purified SWCNTs do not generate radicals yet cause a measurable level of genotoxicity to 

fibroblasts in the comet and micronucleus assay.39 However, CNFs generate significant 

radicals and are more genotoxic than SWCNTs.43 Sargent et al.44 reported that SWCNTs 

disrupt centrosomes in dividing lung epithelial cells resulting in multipolar mitosis and 

aneuploidy. MWCNTs have also been shown to interact with centrosomes preventing 

normal migration to mitotic poles and resulting in monopolar mitosis.45
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V. Physicochemical Properties and Bioactivity

There is great interest in elucidation of relationships between given physical or chemical 

properties of CNTs and their bioactivity. Knowledge of such relationships would impact 

prediction of relative hazard in the absence of biological data and allow “safety by design”.

A. Contaminating Metals

As discussed above, contaminating catalytic metals appear to play an important role in 

radical generation by CNTs and their in vitro cytotoxicity. However, metal contaminants do 

not appear to drive pulmonary responses to in vivo CNT exposure. Lam et al.46 reported 

rapid and persistent granulomas in mice after intratracheal instillation of SWCNTs. 

However, the degree of this granulomatous reaction was not dependent on metal 

contamination when responses of raw (25% metal catalyst by weight) and purified (2% iron 

by weight) SWCNTs were compared. Similarly, the inflammatory response to aspiration of 

raw (17.7% iron) vs purified (0.23% iron) SWCNTs was not significantly different.13,14

B. Agglomerates versus Dispersed Structures

As discussed above, well-dispersed SWCNTs and MWCNTs are more fibrogenic in vitro 

than agglomerated CNTs, causing greater proliferation and collagen formation with 

fibroblasts and greater TGF-β1 production by lung epithelial cells.40–42 Aspiration of a well-

dispersed SWCNT preparation also caused more transient inflammation and persistent 

interstitial fibrosis than poorly dispersed SWCNTs.15 In contrast, poorly dispersed SWCNTs 

caused a greater granulomatous response. Similarly, Li et al.47 reported a greater degree of 

inflammation following intratracheal instillation of agglomerated MWCNTs and greater 

alveolar wall thickening after inhalation of more dispersed MWCNTs. A strong 

granulomatous response with low interstitial fibrosis was also reported after inhalation of a 

highly agglomerated MWCNT preparation.48

C. Functionalization of CNTs

Functionalization of MWCNTs with COOH groups decreased in vitro MWCNT stimulation 

of TGF-β1 production by bronchial epithelial cells and decreased stimulation of IL-1β in 

THP-1 cells.22 COOH functionalization of MWCNTs mitigated pulmonary inflammation, 

lung damage, and IL-1β production after aspiration.23 In addition, COOH functionalization 

significantly decreased the fibrogenic response in the alveolar septa.22,23 The depression of 

bioactivity achieved by COOH functionalized of MWCNTs was only partial and did not 

result in a nonfibrogenic CNTs.

D. Relative potency of SWCNTs, MWCNTs, and CNFs

Murray et al.19 compared the potencies on an equal mass basis of SWCNTs, CNFs, and 

asbestos to induce pulmonary inflammation, lung injury, and fibrosis from 1 to 28 days after 

pharyngeal aspiration in mice. At 1 day postexposure, potency for acute inflammation and 

damage was SWCNTs > CNFs > asbestos, while at 7 days postexposure the potency 

sequence was SWCNTs > CNFs = asbestos. At 7 days post-exposure, SWCNTs > CNFs = 

asbestos in the induction of the fibrogenic factor, TGF-β. At 28 day postexposure, the 

potency sequence for induction of alveolar wall thickening and lung collagen was SWCNTs 
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> CNFs = asbestos. Mercer et al.15,18 conducted quantitative microscopy of mouse lungs 

after aspiration of SWCNTs and MWCNTs. Only 10% of deposited SWCNTs were found in 

alveolar macrophages, while 90% rapidly crossed the alveolar epithelium and entered the 

alveolar wall interstitium. In contrast, 70% of MWCNTs deposited in the alveolar region 

were found in macrophages, while only 8% entered the alveolar septa. As a result, on an 

equal deposited mass basis, SWCNTs were more fibrogenic than MWCNTs. This greater 

potency of SWCNTs remained even when corrected for the difference in alveolar wall 

burden.

Kisin et al.39 reported that CNFs induced a more potent genotoxic response than SWCNTs 

in vitro. In contrast, the potency of SWCNTs and MWCNTs to transform lung epithelial 

cells in a long-term culture system was similar.49

E. The Effect of Fiber Length on CNT Potency

Muller et al.50 reported that grinding a MWCNT sample decreased fiber length from 6 to 0.7 

μm. At 60 day post-exposure, 81% of unground MWCNTs were retained in the lung 

compared with 30% of the ground sample. The authors concluded that this would affect 

long-term pulmonary responses.

Takagi et al.24 reported that intra-abdominal injection of MWCNTs (28% >5 μm in length) 

caused mesothelioma. In contrast, Muller et al.51 reported no mesothelioma over a 2 year 

observation period following intraperitoneal injection of short MWCNTs (0.7 μm in length). 

Poland et al.52 demonstrated that intraperitoneal injection of long MWCNTs but not short 

MWCNTs were inflammatory and induced granulomatous lesions on the diaphragm 2 week 

postexposure. This length-dependent effect was confirmed with MWCNT-induced lesions 

on the inner lining of the chest wall 28 days after intrapleural exposure to MWCNTs.26 The 

authors suggested that two length-dependent mechanisms are involved: (1) frustrated 

phagocytosis of long fibers by macrophages and (2) failure of long fibers to be cleared from 

the intrapleural space via stomata in the parietal pleura.53

VI. Relationships between Bolus Pulmonary Exposure (IT or Aspiration) 

and Inhalation

It has been argued that bolus particle exposure (intratracheal instillation or pharyngeal 

aspiration) would result in a greater pulmonary reaction than inhalation exposure due to 

nonuniform deposition creating hot spots and the greater time-dependent lung burden.

Shvedova et al.14 compared pulmonary responses of mice to pharyngeal aspiration vs a 

short-term inhalation (4 days) of SWCNTs. In this investigation, the SWCNT dry aerosol 

preparation for inhalation was more dispersed than the CNT suspension used for aspiration 

exposure. Results indicate that inhalation exposure resulted in 4-fold greater inflammation 

and fibrosis than aspiration of the same mass lung burden. Li et al.47 reported similar 

findings, that is, inhalation of a more dispersed MWCNT preparation caused greater 

interstitial fibrosis and cell proliferation than aspiration of a less dispersed preparation. 

Mercer et al.15 found that when efforts were made to improve the dispersion of aspirated 

SWCNT suspensions, fibrotic potency was similar between aspiration and a 4 day inhalation 
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exposure. Porter and colleagues compared the inflammatory response to aspiration of a well-

dispersed MWCNT suspension and to short-term inhalation (4 days) of a dry MWCNT 

aerosol. They found that the levels of pulmonary inflammation and damage were not 

significantly different between these two modes of pulmonary exposure.16,17 In addition, 

NIOSH11 conducted a risk analysis to compare benchmark human exposure concentration 

for MWCNTs using data from a mouse aspiration16 vs a 3 month inhalation54 study. 

Benchmark exposure concentrations for MWCNT-induced pulmonary granulomatous 

inflammation or fibrosis were 0.61 μg/m3 vs 0.51 μg/m3 for the aspiration vs inhalation 

study, respectively. Therefore, evidence indicates that when CNT samples of similar 

dispersion are used, aspiration studies can predict a pulmonary response that is consistent 

with short-term inhalation studies when dosed at an equal mass lung burden.

VII. Relationship between in Vivo and in Vitro Responses to CNTs

Many in vitro studies with CNTs have employed tissue culture doses in the range of 10–100 

μg/mL and have reported cytotoxicity.1 However, on a per cell basis, such doses are orders 

of magnitude higher than those achieved in pulmonary exposure studies with rats or mice 

and may not be relevant to workplace exposure. NIOSH researchers have employed 

micrograms of CNTs per alveolar epithelial cell surface area as a dose metric to compare 

lung burdens in rodents to projected burdens in workers. Stone et al.55 reported alveolar 

epithelial surface areas determined by morphometric analysis as 102 m2, 0.4 m2, and 0.05 

m2 per human, rat, and mouse lungs, respectively. NIOSH researchers have employed 

similar doses (CNT mass/surface area of cells) for in vitro studies. When such low exposure 

doses are employed, stimulation of lung fibroblast proliferation and collagen production 

rather than cytotoxicity were found, which mimic the fibrogenic effects of CNTs observed 

after pulmonary exposure. Such low doses also reveal CNT-induced cell transformation and 

aneuploidy instead of cell death.44,49

VIII. Effectiveness of Controls

The discussion above indicates that CNTs and CNFs can be aerosolized as respirable 

particles during synthesis and processing activities in the workplace. Since pulmonary 

exposure to CNTs and CNFs in rodent models consistently results in acute pulmonary 

inflammation and persistent fibrosis, worker exposure is considered a respiratory health risk. 

Therefore, it would be prudent to minimize inhalation exposure to workers. Han et al.5 have 

reported that the use of engineering controls can effectively decrease airborne MWCNT 

concentrations during laboratory synthesis and processing. Similarly, Methner56 reported 

that local exhaust ventilation decreased airborne nanoparticle concentrations during reactor 

clean out by 88%. In addition, Regasamy et al.57 have shown that filtering facepiece 

respirators equipped with a 95 or 100 series filter will effectively capture more than 95% of 

nanoparticles in the size range of 4–30 nm. NIOSH has published a document containing 

recommendations for engineering controls, administrative controls, worker training, use of 

personal protective equipment, and implementation of safe handling practices for 

nanomaterials, which would significantly decrease worker exposure.58
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IX. Interim Recommendation for Implementation of Prevention Strategies

Use of animal model data and risk assessment indicates that at current workplace CNT and 

CNF respirable mass concentrations, a risk to workers for adverse respiratory effects may 

exist over a working lifetime.11 As noted above, engineering controls (containment, exhaust 

ventilation) and personal protective equipment (e.g., respirators) appear effective for 

significantly reducing airborne CNT and CNF concentrations. Therefore, it appears prudent, 

based on available data, to implement prevention strategies. Therefore, a combination of 

engineering controls, worker training, administrative controls and good handling practices, 

and personal protective equipment have been recommended to protect worker health.11

X. Conclusions

Available information indicates that CNTs and CNFs can be aerosolized in the workplace. 

Animal model studies report that pulmonary exposure to CNTs or CNFs can cause persistent 

granulomatous lesions and alveolar interstitial fibrosis. In addition, pulmonary exposure to 

CNTs has been shown to cause cardiovascular effects. In light of these potential health 

effects, control of exposure is a prudent course of action.

To support more definitive risk assessment and development of exposure standards, several 

knowledge gaps must be addressed. First, more workplace exposure data are required, and 

more precise measurement methods are needed. Such exposure data would guide long-term 

animal studies to determine the time course and dose response for possible development of 

fibrosis, lung cancer, or mesothelioma. Elucidation of mechanisms of action could identify 

biomarkers, which would be useful in worker surveillance. Lastly, elucidation of 

relationships between physicochemical properties and bioactivity would assist in progress 

toward “safety by design”.
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